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Abstract

The article discusses a method for constructing linear surfaces based on extracting them
from an elliptical linear congruence (ELC), given by four intersecting lines or collinear corre-
spondence of flat fields. A projective-graphic algorithm for constructing a real line intersect-
ing the imaginary ELC directrix has been proposed. The algorithm is based on the use of an
image of imaginary points in the form of a special marker, which allows for the imaginary
points to be used along with real points when performing constructive constructions. Extract-
ing a surface from an ELC is reduced to a repeated application of the algorithm.

A theorem has been proved on the existence of a pencil of planes intersecting a linear al-
gebraic surface of the order k+2 along algebraic curves of the order k (Theorem 1). The theo-
rem allows constructing a skeleton of an algebraic surface of the fourth order from lines and
curves of the second order. The variants of transition from linear congruence given by four
straight lines to an identical congruence given by the collinear fields P<P' have been pro-
posed. This transition makes it possible to solve the practically important issue of designing a
linear surface passing through two conical sections. The existence theorem for the collinea-
tion P—P', drawn in the fields P, P' by the curves of the second order has been proved (Theo-
rem 2).

A biaxial linear surface with constant-length generators has been considered. It has been
shown that such a surface is distinguished from a linear congruence with real axes by im-
mersing a guiding ellipse into it, the eccentricity of which is uniquely determined by the angle
between the congruence axes (Theorem 3). The technological advantage of such surfaces, al-
lowing to recommend them for use in architecture and construction, is that they are mounted
from rectilinear beams or rods of the same standard size.

Examples of computer visualization of linear surfaces with imaginary and real directrices
have been presented.

Keywords: linear congruence, imaginary algebraic elements, imaginary point marker,
directing curve, linera quadric, collinear fields.

1. Introduction

A linear congruence Kr (u, v) is called a two-parameter set of lines intersecting predeter-
mined intersecting straight lines u, v (congruence directrices).Directrices can be real different
(hyperbolic linear congruence, HLC), real coincident (parabolic linear congruence, PLC), or
imaginary complex conjugate (elliptic linear congruence, ELC).

One of the methods for constructing linear surfaces is to extract them from the linear congru-
ence by immersing a guiding curve line in the congruence body. For example, if a surface is
distinguished from Kr (u, v) by specifying a second-order guiding curve 7, we obtain a fourth-
order algebraic linear surface with guides u, v, 7 [1].

A constructive way of separating a surface from an HLC with the directrices u, v consists in
constructing a one-parameter set of rectilinear generators of the required surface passing
through the points of the guiding curve 7 and intersecting the real lines u, v.
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This problem is solved by the well-known methods of descriptive geometry [1]. It should be
noted that a metric condition can be used instead of a guide curve. For example, a linear sur-
face can be separated from the HLC by the requiring a constant length of the generatrix (see
Section 7).

To extract a surface from a PLC, an auxiliary linear quadric @ is introduced into consideration
and a PLC is defined as a set of straight lines intersecting two infinitely close (in the limit co-
inciding) intersecting generators u, v of the quadric ®. This allows the PLC to be identified as
a family of straight lines tangent to a linear quadric at the points of one of its rectilinear gen-
erators [3].Through an arbitrarily specified point of the guiding curve 7 immersed in the PLC,
there is the only line p tangent to the quadric ® and intersecting its generator u=v. The con-
struction of the straight line p is performed by the well-known methods of descriptive geome-
try [1]. The one-parameter set of straight lines p forms the desired linear surface extracted
from the PLC.

If it is required to extract a surface from ELC, then the problem is reduced to constructing a
set of real straight lines (forming the required surface), each of which intersects a pair of im-
aginary complex conjugate straight lines u~v (ELC directrices) when passing through one of
the points of the guiding curve 7. The methods of classical descriptive geometry are inappli-
cable in this case, since they involve the execution of graphic constructions with the participa-
tion of imaginary points and imaginary lines.

Graphic constructions with the participation of imaginary elements were considered both in
the works of the authors of the 19th century [2] and in modern studies [3-6], but they didn’t
pose or solve the problem of constructing a real straight line incident to a predetermined
point in space and intersecting with two predetermined imaginary conjugate crossing lines
(ELC directrices). For example, in [3, p. 74], an algorithm for constructing a straight line in-
tersecting with the imaginary ELC directrices is indicated, but the incidence requirement for
this point is not taken into account.

Scientific novelty. The article proposes a projective-graphical algorithm for constructing a
real line that satisfies both the condition of incidence at a predetermined point, and the con-
dition of intersection with predetermined imaginary ELC directrices. For the constructive
implementation of the proposed algorithm, computer visualization tools [7] are used for im-
aginary elements in conjunction with a software module [8-10], which allows drawing curves
of the second order incident to any predetermined set of both real and imaginary points and
tangents [11].

The relevance of the work is due to the fact that imaginary algebraic elements (imaginary
points, imaginary lines, imaginary algebraic lines and surfaces) are an integral attribute of
any actions with algebraic varieties. The participation of imaginary elements in geometric al-
gorithms is just as necessary and natural as the participation of complex numbers in algebraic
transformations. As a result, the problem of the exact constructive implementation of graph-
ical algorithms containing actions with imaginary algebraic figures is urgent.

Practical significance. The proposed algorithm for extracting a linear surface from a linear
congruence with imaginary directrices makes it possible to design architectural forms, floors,
and shells that differ from traditional surfaces based on real axes, which expands the area of
application of linear structures in architectural and construction design. In what follows, the
directrices u, v will be called the axes of congruence.

2. Formulation of the problem

A linear congruence can be specified in several different ways, in particular, by its own axes u,
v (Method 1) or by four pairwise crossing lines a, b, ¢, d belonging to the congruence (Method

2).



Both methods are geometrically equivalent: if 4 lines a, b, ¢, d belonging to a congruence are
given, then its axes u, v can be found.

Let’s consider an algorithm for constructing the u, v axes of the congruence Kr (a, b, c, d) giv-
en in the second method. Let us introduce the linear quadric ®, which is completely defined
by three of the given straight lines, for example, the straight lines a, b, c. The quadric
®=0,+d, consists of the semi-quadric ®; containing the straight lines a, b, ¢, and of the con-
jugate semi-quadric ®. (Fig. 1).
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Fig. 1. Constructing the axes of the congruence Kr(a, b, c, d): (a) HLC; (b) PLC; (c) ELC

Let the straight line d intersect the quadric @ at the points U, V. Then the straight lines u, v of
the semi-quadric ®@. passing through the points U, V are the congruence axes [3].

If the straight line d intersects @ at the real points U, V, then the u and v axes are real lines,
and the congruence Kr(a, b, ¢, d) is hyperbolic (Fig. 1, a). If the points U, V coincide (the
straight line d touches the quadric ¢), then we obtain a PLC with infinitely close (coinciding
in the limit) crossed axes u=v (Fig. 1, b). If the straight line d intersects with ®, at real points
U, V and then the u and v axes are real lines, and the congruence Kr (a, b, ¢, d) is hyperbolic
(Fig. 1, a). If the points U, V coincide (the straight line d touches the quadric ¢), then we ob-
tain a PLC with infinitely close (coinciding in the limit) crossing axes u = v (Fig. 1, b). If the
straight line d does not intersect with the quadric ®, then the points U, V and the generating
u, v of the semi-quadrics ®2 passing through them are imaginary (Fig. 1, ¢).In the latter case,
we obtain an elliptical linear congruence (ELC), to which the known surface extraction meth-
ods suitable for GLC and PLC are not directly applicable.

Hence the problem follows: to develop a graphical algorithm for constructing and visualiz-
ing a linear surface, separated from the ELC by immersing a guiding curve t into it.

Only rectilinear generator t of the sought surface included in this ELC passes through any
given point of T of the curve 7. Therefore, the problem of extracting the surface from the ELC
is reduced to compiling an algorithm for constructing a straight line passing through a given
point T and intersecting a pair of imaginary complex conjugate striaght lines u~v (ELC di-
rectrix), and to the subsequent repeated application of this algorithm to a series of points T; of
the guide curve 7, where 1 is the number of generators of the constructed surface required for
accurate visualization.

3. Extracting a straight line passing through a given point
from an ELC

Let a linear congruence be given by four pairwise intersecting straight lines a, b, c, d. It is re-
quired to extract from the congruence Kr (a, b, ¢, d) a straight line passing through the given
predetermined point T in the three-dimensional space.

We find the u and v axes of the congruence, that are transversals of the straight lines a, b, c, d
using the method described in Section 2.If these transversals are real different (HLC) or real



coincident (PLC), then the solution known from descriptive geometry is reduced to the con-
structing of a straight line passing through a given point 7 and intersecting the found axes [1].
If the transversals u and v are imaginary, then they cannot be represented explicitly. In this
case, the problem is reduced to the constructing a real straight line passing through 7 and in-
tersects the imaginary lines u, v. The following algorithm is proposed to construct such a
straight line:

Step 1. We introduce into consideration auxiliary linear quadrics ¢.(a, b, ¢) and ¢-(a, b, d),
which are completely defined by triples of generators (a, b, c) and (a, b, d), respectively. The
imaginary straight lines u, v (the ELC axes), being transversals of the given straight lines a, b,
¢, d, intersect with both triples of generators, therefore, the imaginary straight lines u, v be-
long to both quadrics.

Step 2. Through the point T indicated in the problem statement, draw an arbitrary plane X
and draw conical sections fi=@:NZ, fo=@-NX (Fig. 2, a). The construction of continuously
drawn conics f;, f> is performed using the special software [8]. The conics fi, f. passing
through the groups of points A, B, C and A, B, D, intersect each other at real points A, B and
at imaginary conjugate points U~V (here 4, 8, ¢, p are the intersection points lines a, b, ¢, d with
the plane X).

Fig. 2 .Allocation of a straight line incident to the point T from the ELK: a- initial data; b-
construction of marker {/,OL} of imaginary points U~V; ¢- construction of a conic passing
through imaginary points U~V r is determinant of a quadric containing the desired straight
line.

Step 3. The imaginary straight lines u, v belong to the quadrics ¢, @2; therefore, the imagi-
nary points of intersection of these straight lines with the plane X coincide with the imaginary
points U~V of the intersection of the conic sections f;, fo.

Intersecting at real points A, B and at imaginary conjugate points U~V, the conics f, f- estab-
lish on the line [=UV the same elliptic involution o with imaginary double points U, V.The
imaginary points U~V are depicted by the marker [{O, L}, consisting of the center O of the in-
volution ¢ and the Laguerre point L, from which the involution o is projected by the orthogo-
nal pencil of lines (Fig. 2, b). The real straight line [ passing through the imaginary conjugate
points U~V is the homology axis connecting the conics f;, f-.

The construction of marker I[{O, L}, conventionally representing the imaginary points U~V is
carried out in a known way [11, 12]. The graphic representation of imaginary points U~V in
the form of a marker [{O, L} allows using these points along with real points in subsequent
constructive constructions.

Step 4. Let’s introduce into consideration an auxiliary linear quadric @3 (a, b, t), where t is
the required straight line. The generators a, b, t of this quadric, according to the condition of
the problem , intersect with the imaginary axes u, v of the elliptic congruence Kr(a, b, c, d),
therefore, the axes u, v are included in the composition of in the quadric ¢s.In the section of
this quadric by the plane X, we obtain the conic f; passing through the real points A, B, T and



through the imaginary conjugate points U~V given in the drawing by the marker [{O, L} (Fig.

2.b). A projective computer algorithm [11], compiled according to [13, p. 147], is used to draw
the conic f3,

Step 5. The continuously drawn conic f; and the rectilinear generators a, b intersecting it at
points A, B uniquely determine the quadric @3 (a, b, t), which allows finding the desired
straight line t from the conditions of its incidence to the point 7" and belonging to the family q,
b, ... -forming quadrics @5 (Fig. 2, d). The problem has been solved.

4. Extracting a surface from ELK

Theorem 1. If an algebraic linear surface ® of the order k+2 is given by a guiding curve ek of
the order k and two intersecting rectilinear guides u, v (real or imaginary conjugates) inter-
secting the plane of the curve ek at points U, V (real or imaginary conjugates), then the line
UV (always real) is the axis of the pencil of planes intersecting the surface ® along algebraic
curves of the order k.

Proof. The line UV intersects the guiding curve ek at two points (real or imaginary conju-
gate), and also intersects the rectilinear guides u, v, therefore, UV is two coincident genera-
tors of the surface ©. The linear surface © is an algebraic surface of the order k+2, in the sec-
tion of which by an arbitrary plane passing through UV, we obtain a curve that splits into the
double line UV and a curve of the order k. The theorem is proved.

The visualization of the ruled surface ©, extracted from the ELC Kr(a, b, ¢, d) by immersing a
guiding curve into it, is visualized on the basis of Theorem 1 and multiple repetition of Algo-
rithm 1 ... 5 described in Section 3.

Example. Let it be required to form a fourth-order linear algebraic surface ©, “stretched” on
a space frame, given by a circle r lying in the plane X, and four intersecting straight lines a, b,
¢, d (Fig. 3, a). The condition of the problem is satisfied by the surface separated from the lin-
ear congruence Kr (a, b, ¢, d) by immersing the guiding circle r into it. In accordance with Al-
gorithm 1 ... 5, the line quadrics ¢: (a, b, ¢) and @2 (a, b, d) are introduced into consideration.
Having drawn the auxiliary conical sections f; = ¢:NZ, f> = @-NZ, let’s note that they intersect
only at two real points A,B , therefore, the u~v axes of the congruence Kr(a, b, ¢, d) are imag-
inary (the conics f;, f> are not shown in Fig. 3 conventionally).

)

Fig. 3. Selection of the surface from an ELC: a- initial data; b- surface frame and marker
{LLOL} of imaginary points of intersection of the ELC axes with the plane X



Find the marker l{O, L} of the imaginary points U~V of the intersection of the conics f; and f-.
At these points, the imaginary axes u, v of the congruence Kr (a, b, ¢, d) intersect the plane
(Fig. 3b). In accordance with Algorithm 1 ... 5, mark several points on the guide circle r and
extract from Kr(a, b, c, d) several additional rectilinear generators t; (i=1, 2, 3, ...) of the con-
structed surface ©® passing through points marked on r.

According to Theorem 1, the planes passing through the straight line [=UV intersect ® in con-
ical sections. A surface frame is obtained consisting of straight lines and curves of the second
order (see Fig. 3, b).The planes X', £" that do not pass through [ intersect ® along curves of
the fourth order w’', w". A visualization of the surface is shown in Fig.4.

Fig. 4. Algebraic linear surface with imaginary axes (visualization)

5. Specifying the congruence Kr (a, b, ¢, d) using a colline-
ation

The congruence Kr (a, b, ¢, d), given by the intersecting straight lines a, b, ¢, d, can be identi-
cally defined by the congruence Kr (IT<II') of straight lines connecting the corresponding
points of the collinear fields IT<II' ( provided that in collineation IT<II' the line [= IINIT'
corresponds to itself) [3, 14]. The u, v axes of the congruence Kr (IT<II') (real or imaginary)
intersect the straight line [ at the real or imaginary conjugate points U, V. Consider two ver-
sions of the transition from the congruence Kr(a, b, ¢, d) to the identical congruence
Kr(IT<IT")

5.1. Variant 1 (one of these straight line is self-consistent)

A linear congruence Kr (a, b, ¢, d) is given. Through one of the straight lines (for example,
through d) we draw arbitrary planes I1, IT".The straight lines a, b, ¢ are cut out on planes IT, IT'
points A, B, C and A', B ', C'. We define a collinear correspondence of the fields IT<II' by
three pairs of points A~A', B~B ', C~C' and a straight line d=IINII', which we will assume to
be self-consistent. In this case, the family of straight lines connecting the corresponding
points of the fields IT, IT' is the linear congruence Kr (IT<I1") [3].



Let us show that the congruences Kr (a, b, ¢, d) and Kr (IT«<II") coincide. The collineation
[T—II' induces on the straight line d a projectivity with double points U=U", V=V’ (real or im-
aginary). The axes u, v (real or imaginary) of the congruence Kr (IT<1II') pass through these
points and intersect with the straight lines a, b, c, therefore, the straight lines u, v are trans-
versals of the straight lines a, b, ¢, d, that is the axes of the congruence Kr(a, b, c, d). The co-
incidence of the congruences follows from the coincidence of the axes.

The proposed version of the transition from Kr (a, b, ¢, d) to Kr(IT«II') can be used to extract
from the congruence Kr(a, b, c, d) the straight line t passing through a given point 7. Let’s
draw the plane IT through the straight line d and point 7. Draw another (arbitrary) plane IT'
through the straight line d. We mark the points of intersection A~A', B~B', C~C' of straight
lines a, b, ¢ with planes II, IT'. In the collineation II(A, B, C)«II'(A', B ', C") with the self-
corresponding line d, we find the point 7" corresponding to the point 7. Through the points
T~T'we draw the sought straight line t. The sought straight line is extracted from the congru-
ence.

5.2. Variant 2 (general case)

A linear congruence Kr (a, b, c, d) is given. Let us introduce into consideration the line quad-
rics @:(a, b, ¢) and @2(a, b, d) and an arbitrary plane II intersecting them. We draw conical
sections f;=@.NII, fo=@.NII,passing through the triples of points (A, B, C) and (A, B, D). Here
A, B, C, D are the points of intersection of the straight lines a, b, ¢, d with the plane II.

The conics f;, f- intersect at the points A, B and at two more points U, V (real or imaginary)
through which the axes u and v (real or imaginary) of the congruence Kr (a, b, c, d) pass. We
draw an arbitrary plane IT' through the straight line [=UV (always real) and mark the points
A', B', C', D' of intersection of rays a, b, ¢, d with the plane IT'. Let’s define the collinear corre-
spondence of the fields I[I<II' by three pairs of the corresponding points A~A', B~B', C~C’
and the self-corresponding straight line [=IINII". The collineation IT<II' induces on [ a pro-
jectivity with the double (self-corresponding) points U, V. The family of lines a, b, c, ... con-
necting the corresponding collineation points IT<II' is the linear congruence Kr (IT-1I1'), and
the semi-quadric @.(a, b, ¢) containing three straight lines a, b, ¢ of the congruence
Kr(IT—IT")), all consists of the straight lines of this congruence.

Let us show that the straight line d is included in the congruence Kr(II—II').Let’s suppose
that the generators of the semi-quadrics @.(a, b, ¢) and @2(a, b, d) generate two different col-
lineations. The double points U, V coincide in these collineations. In addition, two common
straight lines a, b of the quadrics ¢, ¢- cut the same pairs of the corresponding points A~A’,
B~B'in the fields II, IT'. Four pairs of corresponding elements of the two collineations coin-
cide, which means that the collineations’ coincide. It follows from this that all generators of
the semi-quadrics @i(a, b, ¢) and @-(a, b, d), and the straight line d, are included in the same
congruence Kr(IT<IT'"). The coincidence of the four rays a, b, c, d of the congruences Kr (a, b,
¢, d) and Kr (IT—II ") implies the coincidence of the congruences themselves.

The proposed variant of the transition from Kr (a, b, ¢, d) to Kr(IT—II") can be used to extract
a straight line t passing through a given point T from the congruence Kr(a, b, ¢, d). Draw
through T an arbitrary plane II. Let’s mark the points A, B, C, D of the intersection of straight
lines a, b, ¢, d with the plane I1. Draw the sections fi(A, B, C)=@.(a, b, c)NII, fo(A, B, D)=@-(a,
b, d)NII. Through the straight line [ connecting the points U, V (real or imaginary) intersec-
tions of the conics f;, f-, draw an arbitrary plane I1' and mark the points A, B ', C', D' where
the straight lines a, b, ¢, d intersect with the plane II'. We obtain the collineation
I[I(ABCD)«IT'(A'B'C'D") with double points U, V lying on the self-corresponding straight line
[=ITNIT".We find the point 7" corresponding to the point T in this collineation. The sought
straight line t passes through the points T, T



6. Linear surface passing through two given conics

A linear congruence given by collinear fields allows solving the practically important problem
of constructing a linear surface passing through a pair of predetermined conic sections [14].
Theorem 2. If arbitrary conical sections r, r’' with points A, A' are drawn in flat fields II, IT',
then there are only two variants of collineations IT«<II' with a self-corresponding weakly in-
variant line [=IINIT", in which rer', A—A'.

Proof. Draw the tangents t4, t'a to the given conics at the points A, A’ (Fig. 5). From points
1=tANL, 1'=t'ANl draw the tangents tg, t's. Marking the points 2=ABNI, 2'=A'B'Nl, draw from
these points the tangents tc, tp, t'c, t'p to the conics r, r'. We get the quadrilaterals (¢4, t5, tc,
tp) and (t'a, t's, t'c, t'p) with vertices (1, 2, P, Q, M, N) and (1',2 "', P', Q ', M', N"), described
near the conics r, r'. According to Brianchon's theorem, the lines AB, CD and A'B ', C'D' con-
necting the touching points, pass through the points 3=QPNMN, 3'=Q'P'NM'N’ of the inter-
section of the diagonals of these quadrilaterals (see Fig. 5).The lines CD, AB and C'D', A'B’,
according to the theory of poles and polar, are incident to the points 1, 2 and 1', 2', therefore,
in the planes IT and IT' the complete quadrangles MNPQ and M'N' are obtained P'Q’, carrying
the harmonic groups of points on their sides [15].

Thus, the correspondence of the flat fields II, IT', given by those indicated in Fig. 5 fours of
tangents (4, ts, tc, tp) and (t'a, t's, t'c, t'p) or the fours of points (M, N, P, Q), (M', N', P, Q", is
a collineation (since straightness, incidence, and harmonism are preserved) that meets the
conditions of the theorem. In this collineation the conics r, r' are mutually corresponding,
and the straight line /=12 transforms into the straight line coinciding with it /'=1'2'. The pairs
of the corresponding points 1~1', 2~2', ... do not coincide, therefore [=['is a weakly invariant
straight line. Only two collineation variants are possible: (t4, ts, tc, tp) <> (t'a, t's, t'c, t'p) Win
(ta, tB, tc, tp) <> (t'a, t', t'p, t'c). The theorem is proved.

Fig. 5. For Proof of Theorem 2

6.1. Algorithm for constructing rectilinear generators.

On the basis of Theorem 2, the problem of constructing rectilinear generators of an algebraic
surface of the fourth order passing through the conics r, r’ and having a predetermined gen-
erator AA'is solved. Assuming that the collineation IT<II' is given by the drawn conics r, r’
and a pair of corresponding points A<»A' on these conics, we obtain, according to Theorem 2,
the congruence Kr (IT<II'). To extract the desired surface from it, it is necessary to point to
several points Ti on one of the cones and find the corresponding in the collineation IT<IT'



points T;', where i is the number of generators of the constructed surface required for accurate
visualization.

Step 1. Draw the tangents t4, t'4 to the conics r, r' at the points A, A". From the points 1=taNl,
1'=t'aNl draw the tangents tg, t's. From points 1 = tANl, 1 '= t'‘AN] draw the tangents tB, t'B.
Marking the points 2=ABN[, 2'=A'B'Nl, draw from these points the tangents tc, t'c (Fig. 6, b).
According to Theorem 2, the collinear correspondence of the fields IT<II' (with the self-
corresponding straight line [ and the mutually corresponding conics r, r) is completely de-
termined by four straight lines (4, ts, tc, AB) < (t'a, t's, t'c, A'B"), at which the points C < C’
are mutually correspondent.

Note for Step 1. Another possible collineation variant is generated by the corresponding
straight lines (ta, ts, tc, AB) <> (t'a, t's, t"c, A'B"). In this case, the correspondence C < C"is re-
placed by the correspondence C < C" (see Fig. 6, b).

Fig. 6. Constructing a surface passing through two conics: a- initial data; b- collineation II-
IT' (two variants); c- extracting the generator t from the congruence Kr(IT<II")

Step 2. Through point T an auxiliary straight line is drawn (for example, straight line TC)
and point 3=TCNAB is marked on it (Fig. 6, ¢). From the condition preservation of a complex
relation (2AB3)=(2'A'B'3") we find point 3'.

Step 3. On lines B5 and B'5' mark points 4 and 4'. From the condition of preserving the com-
plex relation (CT43) = (C'T'4'3 ") we find the point T". By direct verification on a computer
model, we make sure that 7" is incident to the conic r'. Connecting the points T'and 7", we ob-
tain the generator t (see Fig. 6, c).

Multiple applications of the algorithm allow finding any number of rectilinear generators of
the required surface. According to Theorem 1, the pencil of planes passing through [ inter-
sects this surface along curves of the second order.

6.2. Special case (planes II, IT' are parallel)

If planes II, IT' are parallel, then the straight line [ becomes improper, and the projectivity de-
generates into an affine correspondence of the point fields IT<II', since a simple relation and
parallelism are preserved. For example, it is required to “pull” a linear surface onto a frame
given by a rectilinear generatrix AA' and the conics r, r' lying in the parallel planes I1(zx) and
IT'(z'x"). By indicating in the fields II, IT' three pairs of corresponding tangents (t4, ts, tc) <
(t'a, t's, t'c), we obtain the affinity II(r, A)<~II'(r', A") (Fig. 7, a). The straight lines connecting
the corresponding points of the affine fields II, IT' form the body of the linear congruence
Kr(IT«<IT").

Extracting from Kr (IT<1I1') several generators of the required surface and using Theorem 1,
we obtain the skeleton of an algebraic surface of the fourth order, consisting of a family of
rectilinear generators and curves of the second order lying in parallel planes (Fig. 7, b). The
surface visualization is shown in Fig. 8.



Fig. 7. Special case (affine collineation IT<II'): a — initial data; b — surface frame is formed
by conics lying in parallel planes

=

Fig. 8. Linear surface with imaginary axes (visualization)

Note to Section 6.2. If the conics r, r' are similar and similarly located, then the fourth-
order algebraic surface degenerates into a linear quadric.

6.3. Examples

Example 1. Construct a fourth-order linear algebraic surface passing through the conics r, r'
and having a predetermined generator AA' (Fig. 9).

Fig. 9. For Example 1: a- initial data; b- surface frame with imaginary axes (the first collinea-
tion variant IT«II"); c- surface frame with real axes (the second collineation variant IT<II")

Draw the tangents to these conics and mark the points of tangency A~A', B~B', C~C' (or
C~C"). According to Theorem 2, we obtain two variants of collineation: II(ABCK) <«
IT'(A'B'C'K") and II(ABCK) « IT'(A'B'C"K") (Fig. 9, a).

In accordance with the first option, triples of points 1 (1, 2, 3) 1'(1, 2 ', 3') define projective
point series on a common support 1 = 1 'with imaginary double points U = U', V=V ', repre-
sented by the marker 1 {OL}.The imaginary u and v axes of the congruence Kr (IT<II') pass
through these points (Fig. 9, b). Using the algorithm 1 ... 3 considered in Section 6.1, we find
several rectilinear generators of the constructed surface. According to Theorem 1, the surface
bears a family of conic sections, the planes of which pass through [ (see Fig. 9, b).



Considering the second variant of collineation, we obtain a surface with real axes u, v is ob-
tained, which also carries a family of curves of the second order (Fig. 9, ¢). The visualization
of both surfaces is shown in Fig. 10.

Fig. 10.Visualization (Example 1)

Example 2. Construct a fourth-order ruled algebraic surface passing through the hyperbolas
g, g' and having a predetermined generator AA' (Fig. 11, a).We find several rectilinear genera-
tors of the constructed surface using Algorithm 1 ... 3 considered in Section 6.1. According to
Theorem 1, the surface bears a family of conic sections (in this example, hyperbolas), the
planes of which IT; ... IT, pass through [ (Fig. 11, b). A visualization of the surface compart-
ment is shown in Fig. 12.

Fig. 11. For example 2: a- initial data; b- surface frame

&
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Fig. 12. Visualization (Example 2)




7. Biaxial linear surface with generators of constant length

Let’s consider a linear surface Q formed by the motion of a straight line a, fixed points M, N
of which slide along intersecting straight lines m, n. We impose on the constructed surface
the condition |MN|=const (constancy of the length of the generators). Let us show that the
surface Q can be separated from the GLK Kr (m, n) by immersing a guiding ellipse into it, the
eccentricity of which is determined only by the value of the angle between the axes m, n of the
congruence.

Theorem 3. If the ends of the segment MN of a fixed length A slide along straight lines m, n
crossing at the angle a, then the points of the segment describe ellipses lying in planes paral-
lel to the straight lines m, n, and the midpoint of the segment MN describes the middle
(throat) ellipse e, the main axes &:;, 8. of which are equal to &:=tg(a/2)V(As-d.),
8.=ctg(a/2)V(As-d.), where d is the distance between the axes m, n (without proof).
Corollary 1. The ratio of the main axes 6,/8. = tan2(a/2) of the throat ellipse is determined
only by the value of the angle a between the axes m, n.

Corollary 2. The ellipse with the ratio of the principal axes §,/8.=tg2 (a/2), located symmet-
rically with respect to the directing lines m, n, separates an algebraic linear surface of order 4
with generators MN of the constant length |[MN|=A=V(d-+8:8.) from the hyperbolic linear
congruence Kr(m, n).

In particular, if a=mn/2, then, according to Corollary 1, the throat ellipse degenerates into a
circle. We get a double-symmetric linear surface with mutually perpendicular guides m, n,
throat circle r and elliptical sections in planes parallel to the median plane (Fig. 13).

The technological advantage of such surfaces, which makes it possible to recommend them
for use in architecture and construction, is that they are mounted from rectilinear beams or
rods of the same standard size.

a) b)

Fig. 13. Visualization of a surface with mutually perpendicular axes and generators of con-
stant length: a- axonometry; b- plan view

8. Conclusion

It is proposed a computer projective-graphic algorithm for the construction and visualization
of an algebraic linear surface of the fourth order separated from the ELC by immersing a
guiding conic into it. The surface is formed as a one-parameter set of straight lines intersect-
ing two predetermined imaginary conjugate straight lines— ELC directrices (axes). The imag-
inary points of intersection of the imaginary axes of collineation with the real plane of the
guiding conic are depicted with a special marker, which allows using imaginary points along
with real ones when performing constructive constructions.

A theorem is proved on the existence of a pencil of planes intersecting a linear algebraic sur-

face of order k+2 along algebraic curves of order k, which makes it possible to construct a
skeleton of an algebraic surface of the fourth order from straight lines and curves of the sec-
ond order.



The variants of transition from a congruence given by four intersecting lines to a congruence
of straight lines connecting the corresponding points of collinear fields are considered. Linear
congruence given by collinear fields allows solving the practically important problem of con-
structing a fourth-order linear algebraic surface passing through a pair of predetermined con-
ic sections.

A biaxial linear surface with constant-length generators is considered. It is shown that this
surface is distinguished from a linear congruence with real axes by immersing a guiding el-
lipse into it, the eccentricity of which is uniquely determined by the angle between the con-
gruence axes. The technological advantage of such surfaces, which makes it possible to rec-
ommend them for use in architecture and construction, is that they are mounted from recti-
linear beams or rods of the same standard size. This makes it possible to recommend them
for use in architecture and construction.

The computer projective-graphic algorithms proposed in the work make it possible to design
architectural forms, floors, and shells that differ from traditional surfaces based on real axes,
which expands the field of application of linear structures in architectural and construction
design.

The figures presented in the article were made using a software product [8], which allows
performing geometrically accurate construction of second-order curves (SOC) incidental to
predetermined points and tangents. The algorithms outlined in [11] allow using of the pro-
gram [8] to construct CWPs incident to both real and imaginary line elements.
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